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Abstract. We consider an infinite sequence or one-parameter family of I D  maps u,t (x)}  
which converges uniformly to a target map f ( x ) .  The parameter m can be continuous or 
discrete. f , , ( x )  have non-linear dependence on m. The target map f ( x )  generates fully 
chaotic dynamics. We analyse the dynamics generated by the sequence UT,} as the target 
mapf(x)  is approached through this sequence. Here we present the first results of computer 
experiments regarding two special cases of the above situation. 

The intuitive background of this paper is as follows. Most of the non-linear maps 
used to describe chaotic dynamics depend on one or more control parameters. When 
the control parameters are varied continually over a range of values, presumably by 
a controlling physical agency external to the system, the system goes through various 
stages of regular and/or chaotic dynamics [l-61. In this model the maps governing 
the dynamics generally depend linearly on the control parameter. This approach is 
very well suited for describing laboratory experiments where the control parameters 
are essentially the experimental parameters. However, for the natural occurrence of 
chaotic motion the role of control parameters may become quite superfluous. It is 
more likely that the parameters which are responsible for the dynamical evolution of 
a system depend in a complicated way on the dynamical state of the system, as well 
as on the external environment. To see this point we compare the turbulent flow in 
some part of the Earth’s atmosphere with the Rayleigh-BCnard experiment [7,8] in a 
laboratory. In the former case, there can neither be constant temperature gradients 
across the system, nor can these gradients be varied in any controlled fashion. The 
temperature gradients, for the natural turbulent flow, vary with space and time. The 
distribution of the temperature gradients and the velocity field of the fluid depend on 
each other in a complicated way. As one more example, the dynamics of the human 
brain is obviously influenced by external impulses, but their relation is known to be 
extremely complicated and non-linear [ 9 ] .  With this point of view we thought it 
worthwhile to explore the possibilities of dynamical evolution of a system depending 
on naturally changing external conditions which make the system chaotic (e.g. a river 
approaching a fall). 

Henceforth we consider only I D  dynamical systems with discrete time. 
There are two types of I D  maps which give rise to different types of transitions 

from order to chaos. First is the class of unimodal maps which are differentiable maps 
having only one extremum over their domain of definition and which are symmetric 
about this extremum [lo]. The most famous example of this class of maps is the 
logistic map L,(x) = p x (  1 - x)  (0 < p 4). As the parameter p is varied continuously 
from 0 onwards, the chaotic behaviour sets in through infinite cascades of period 
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doubling bifurcations for p > pm = 3.5700. . . [ 1,3]. The range pm < p S 4 is densely 
covered by the intervals (or windows) in p values which give rise to regular dynamics 
(attractive periodic orbits). Within each such window, an infinite bifurcation cascade 
occurs, whose smallest cycle has an odd period. If p is decreased through the point 
at which such a window begins, the system makes a transition to chaos, which is called 
the intermittent transition [ 111. Here, in the transition region, the chaotic character 
appears intermittently in time. The set of values of p for which chaos occurs does 
not form any intervals although it has a positive Lebesgue measure [4, 12-14]. 

The other class of I D  maps generating chaotic dynamics is represented by the 
supercritical Newton iteration near a double root [15]. This is driven by a single 
parameter a / y  such that a / y < O ,  =O and > O  correspond to subcritical (regular), 
critical and supercritical (chaotic) dynamics, respectively. Written explicitly, we get 

(x:+ 1)/2x, subcritical I (x: - 1)/2x* supercritical. 

% + I =  xt/2 critical 

Thus the transition to chaos occurs at a single value of the parameter. The trajectories 
of the supercritical Newton iteration can be obtained from those of the so-called 
Bernoulli shift over two symbols: 

x , + ~  = 2xt (mod 1) O S X S l  

by a simple transformation. The Lyapounov number (see below) of this map is a 
constant independent of x and of any parameter. Its value is In 2. Similarly, transition 
to chaos occurs in the so-called tent map: 

F (x )  = a( l -21x - 1/21) O<a==l 

at a = f [3]. Here the Lyapounov number changes logarithmically with the parameter 
a and is given by ln(2a) which matches with that of the Bernoulli shift for a = 1. 

With the above intuitive background and a very brief summary of the transitions 
to chaos that have been observed for various I D  maps, we analyse two special cases 
of the following situation. Consider an infinite sequence or one-parameter family of 
non-linear maps cfm(x)}, pertaining to a I D  dynamical system where fm : I +  I maps 
an interval I into itself. Each fm(x)  generates a possible dynamics of the system. 
Further, each fm  depends non-linearly on the parameter m which labels the sequence. 
cfm(x)} converges uniformly to a map f (x)  which is non-linear and does not depend 
on m. The convergence must be at least in the CO sense, i.e. in the sup norm, 

d ( f m , f )  =sup{ifm(x)-f(x)l; X E  I > *  

We then analyse how the dynamics of the system changes as the sequence cfm(x)} is 
scanned to approach the target mapf(x).  In the two special cases considered we have 
chosen the target map f (x )  to generate fully chaotic dynamics of the system. 

In order to know whether a system is chaotic or regular we make use of the 
Lyapounov numbers [4,16]. For I D  maps the Lyapounov number is defined as 

wherefk(xo) is the kth iterate off evaluated at xo and the prime denotes differentiation 
WRT x. For a ID  system, if an invariant ergodic probability measure p WRT f exists, 
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then the above limit exists and is the same for p almost all xo [4, 161. Further, if more 
than one attractors coexist, with open intervals as their basins of attraction, then a 
Lyapounov number can be separately defined for each of these basins. It is well known 
that the positivity of Lyapounov number corresponds to the sensitivity to the initial 
conditions [ I ,  41, i.e. to the chaotic nature of the dynamics. The actual formula used 
to compute the Lyapounov number is [17] 

While computing the above sum, the first 1000 iterates were ignored so that the orbit 
settles down to the corresponding attractor. 

Case I. Our first case comprises a one-parameter family of maps given by 

fm(x)=(:[l-$m cos(4.irx) s i n ( 2 / m ) ] + ~ } x ( ~ - x )  O S X X l .  (3) 
For any real m (-a< m <CO), except for m =0,  fm(x)  maps the interval [0,1] into 
itself. However, for any real m, fm(x)  is invariant under the change of sign of m so 
thatf,(x) andf-,(x) generate identical dynamics. Further, for m = 0, the map is not 
defined. Thus one has to consider only the range 0 < m < m. It is easy to see that, as 
m + CO, the one-parameter family of maps given by (3) converges uniformly to the map 

(4) 
This convergence is obvious from figures l ( a )  and ( b )  where the convergence is 
apparent even at m = 5 .  In fact, this convergence is C”. 

We note that the maps fm(x)  are not unimodal and a large number of general 
results obtained for the unimodal maps [ lo]  are not available forf,(x). Maps fm(x)  
and the target map f(x) are bimodal and are symmetric about the unique minimum 
at x = i. Figure 1 shows that the target map f ( x )  has three fixed points, two of them 
being unstable (If’(x*)i > 1 where x* is the fixed point). At x = 0, If’(0)I = 1 so that it 
is critically stable. The above statements also hold for all fm(x) with m exceeding 
about 1.3. 

f ( x )  = [3 sin2(2.irx) + I]X( 1 - x) .  

X X 

Figure 1. ( a )  Mapsf,,,(x) (equation (3))  are plotted for initial values of m. ( b )  The target 
mapf(x)  (4). Convergence of the sequence {L,?(x)} to the target map f(x)  is clearly seen. 
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Assuming the time to be discrete we can now simulate the dynamics by computing 
the time series for any given f m  as 

or 
x n + l  = f m ( X n )  n=0 ,1 ,2 ,  . . .  

x n  = Y m  ( ~ 0 )  o<x ,<  1. 
We now give the outline of the computer experiments performed. The computations 

were done using quadruple precision arithmetic giving a maximum precision of 36 
decimal digits. The intervals in m corresponding to the the attractive periodic orbits 
were identified by varying m at a step of 0.001. The initial point of the orbit, xo, was 
systematically varied to check whether two or more attractors coexist for the same 
value of m. To find out the location ( m  value) at which successive cycles appear, 
power spectra of the time series were extensively used. Parallel to this processing 
Lyapounov numbers were computed for 0 < m s 101 with a step of 0.001. Positivity 
of Lyapounov numbers was taken as a signature of chaos. 

The principal findings of the computer experiments are as follows. 
The dynamics generated by (4) is fully chaotic consistent with a Lyapounov number 

A, = 0.832 789, provided the initial point of the trajectory is greater than about 0.01. 
For xo< 0.01, A, takes a very small negative value ( -  -0.0001) and a very long period 
cycle seems to set in. 

There are four major findings regarding the dynamics generated by the sequence 

( a )  As m increases from zero onwards we first get a sequence of cycles with periods 
2" with basic period k = 1. However, no cycle with period > 128 was detected in this 
cascade, till the first transition to chaos, which occus at about 1.224 680, was reached. 
The minimum step size in m used here was 

( b )  As m increases further, we get a finite number of finite windows in m corre- 
sponding to attractive periodic orbits. Each window corresponds to one or more basic 
periods (see (c))  and bifurcation cascades. These windows are separated by intervals 
in m values corresponding to the chaotic states of the system (however, see (c)). For 
m > 39, no bifurcation cascades are detected. There are two non-degenerate stable 
cycles with basic period unity giving rise to the 2" bifurcation cascade. None of the 
bifurcation bascades was found to contain a cycle with period >256 within a resolution 
of in m. An interesting and important finding regarding all the observed bifurcation 
cascades is that almost every bifurcation is interrupted by a long period cycle (period 
>8192). Thus the observed bifurcations are not sharp. The reason for this lies in the 
fact that the derivative of fm(x) does not change monotonically with m. This also 
seems to be the reason why we do not observe infinite bifurcation cascades within 
Am = 

(c )  For m > 1.3 or so, there are intervals of m values for which both the regular 
and chaotic dynamics occur simultaneously. In this case the total domain [0, 13 gets 
divided into two groups of subintervals. One group forms the basin of attraction for 
the periodic attractor (actually a fixed point) and the other group forms the basin of 
attraction for the chaotic attractor. This phenomenon also occurs for windows where 
the two different attractors are periodic with different basic periods, one of which is 
again a fixed point. 

( d )  Figures 2( a )  and ( b )  show the dependence of Lyapounov numbers, A,,,, on m. 
Whenever the regular and chaotic dynamics coexisted, the initial point xo in (2) 
belonged to the basin of attraction of the chaotic attractor. One can easily see that, 
while A, is a discontinuous and fluctuating function of m for small m, as m increases, 

of maps { f m ( x ) ) *  
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Figure 2. Lyapounov numbers A,,, corresponding toJ, , (x)  in (3) are plotted (a )  for some 
initial m values and ( b )  for 10s m s 45. The clustering tendency of A,,, around an average 
value is quite apparent. (For details see text.) 

A, cluster around some average value, with very small fluctuations. Lyapounov 
numbers were computed for 0.001 S m S 101.0 with a step size of 0.001. It was found 
that, for 39.0 < m S 101.0, A, never become negative. Their average value over the 
range 60.0< m S 101.0 is 0.834 650, rounded to six digits. This average value is very 
close to the Lyapounov number A, corresponding to the target map of (4). Further, 
the convergence of U,,,} (3) to f ( x )  (4) is pretty fast (see figure 1) and the limit m + CO 

can be assumed to have been realised in practice for m = 101.0. In order to check on 
this assertion, we compressed the range of m (0, CO) to (0,4] using the transformed 
parameter 

m =tan( 7ra/8). 

For m = 101.0 a = 3.9748, which is fairly close to 4. To check on the further behaviour 
of A,,, we computed A,,, for values of m ranging up to m=10001.0. These are 
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summarised in table 1. We see that for m > 1001.0, A, stay very close to A,. However, 
we have no proof of the convergence of the sequence {A,} to A,. 

On the basis of the above observations, we can say that, as m +CO, the sequence 
{A,} stays within a small neighbourhood of A,. Further, if r is the size of the smallest 
of such neighbourhoods, then r<< lAml and r<< JA,l which means that the sequence {A,,,} 
clusters around A,. Since A,,, ( m  > 39) and A, are both positive, we conclude that, as 
{f,,,} is scanned towards the target map f (x) ,  after a finite m value, the maps fm(x) 
and the target map f (x)  share the property of generating chaotic dynamics. Further, 
after a finite m value, the chaotic character of the system dynamics becomes stable, 
in fact, becomes almost independent of m. 

For the case of the logistic map L,(x) = px(1- x )  ( 1  S p S 4), the qualitative 
features of the period doubling bifurcations can be obtained using local analysis in 
the following way [ 151. To start with one must know the expression for the (non-trivial) 
fixed point of L,(x) in terms of p and the value of p at which the fixed point of 
L,(x) becomes unstable. These are x* = 1 - p-' and p = 3 which are obtained, respec- 
tively, by solving the equations 

L,(x) = x 

ILL(x*)l= 1 .  

and 

In order to construct the 2-cycle occurring just after p = 3, we expand the function 
g,(x)= Lt (x*-x ) -x*  (g,(O) = O ) ,  about x = O  in Taylor's series up to third order to 
get a cubic polynomial in x whose coefficients are polynomials in p. The expression 
for g,(x) on the higher side of the critical parameter value p = 3 is obtained by putting 
p = 3 + E ( E  > 0) and keeping the first-order terms in E .  Finally, the 2-cycle {xT, x:} 
is obtained by solving g3+e(x)=x.  The next bifurcation is obtained by iteratively 
repeating the above procedure. 

For the maps fm(x) in equation (3) 

fm (x)  = x  
is a transcendental equation and defies any closed form solution. Hence one cannot 
take the above analytical approach without resorting to numerical methods. Thus 
numerical methods seem to be essential for the analysis of the dynamics generated by 
these maps. 

Table 1. Averages of the Lyapounov numbers computed over the unit intervals of m values 
exceeding m = 1000. The value of A, is included for comparison. The step size in m is 0.001. 

Average 
(Rounded to six digits) Interval in m 

1001.0-1 002.0 
2 001.0-2 002.0 
3 001.0-3 002.0 
4 001.0-4 002.0 
5 001.0-5 002.0 
6 001.0-6 002.0 
7 001.0-7 002.0 

10 001.0-10 002.0 
A, 

0.833 062 
0.832 745 
0.832 861 
0.832 809 
0.832 787 
0.832 781 
0.832 552 
0.832 552 
0.832 789 
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Further, the dynamics of the logistic map after the first transition to chaos is 
analysed in terms of the so-called U sequences and the analysis crucially depends on 
the fact that these maps are unimodal [ 5 , 6 ,  101. Since fm(x) are bimodal, they do not 
yield to such analysis. Thus the dynamics generated byfm(x) seems to lack a coherent 
mathematical model. Thus, for example, a satisfactory explanation of the observed 
dependence of A, on m ((figure 2) in terms of the properties of f, seems to be a 
mathematically difficult research problem. 

In spite of the above considerations, our experimental findings clearly indicate that 
the dynamical evolution through the converging sequence of maps {fm(x)} is qualita- 
tively different from the well known dynamical evolution of the unimodal I D  maps. 
To see this we make the following observations. 

(i) Our experiments have shown the existence of intervals in the parameter ( m )  
values for which the Lyapounov number >O.  For the case of logistic type of maps 
the set of values of the control parameter, p, does not form any intervals although 
this set has a positive Lebesgue measure [4,12-141. Thus these maps are not even 
topologically equivalent [ 101. 

(ii) We have seen only a finite number of windows corresponding to the attractive 
periodic orbits, while the corresponding windows for the logistic type of maps are 
infinite and are dense over the whole range pm < p s 4 [ 1,3-6,12-141. Note that these 
two observations are consistent with each other. 

(iii) After a finite value of m the Lyapounov number is always positive, becomes 
independent of the parameter m and stabilises in a small neighbourhood around A,. 
This observation does not seem to have any analogue in the case of unimodal maps. 
In fact, for the logistic map the iterates in the chaotic regime jump between 2" 
subintervals (or islands) of the interval [0, 11 with n decreasing from 00 to 0 as p varies 
from p, to 4. This so-called reverse or period halving bifurcation sequence of chaotic 
bands is not found for {fm(x)}. 

In order to see whether the Lyapounov number is independent of the initial point 
of the trajectory or not, we computed Lyapounov numbers for f (x )  in (4) for 100 
different values of xo in (2). The 100 values for xo were generated using a uniform 
random number generator, giving random numbers between 0.01 and 1. The Lyapounov 
numbers turned out to be constant with average A, = 0.832 789 and standard deviation 
0.152 632 x lo-' both rounded to six digits. 

Case II. Here we consider a discrete sequence of maps: 

m 

4, (x)=(1+ k = l  (-l)"x*)(1-2lx-1/2l) O G x S l ;  m = l , 2 , .  . . . ( 5 )  

Each 4,(x) maps the interval [0,1] into itself. Again, it is easy to see that, as m +a, 
the sequence {+,(x)} converges uniformly to the map 

This fact can be seen from figures 3( a )  and ( b )  which depict the first few 4, (x)  and 
the target map c$(x). Note that 4, are asymmetric functions and are not differentiable 
at x = 5. This does not cause any difficulty in computing the Lyapounov number for 
a chaotic attractor (A, > 0) because the probability that any iterate on a chaotic attractor 
exactly equals i is zero. 
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Figure 3. ( a )  Maps +,,,(x) ( 5 )  are plotted for some initial m values. ( b )  The target map 
& ( x )  ( 6 ) .  Again, the convergence of {+,,,(x)} to +(x)  is obvious. Note the oscillatory 
behaviour of d,),(x). 

Figures 3(a) and ( b )  show that q5(x), &(x) have two fixed points, both of them 
unstable. Note that x = 0 is an unstable fixed point. However, x = 1 is mapped onto 
x = 0 for all m. 

The dynamics due to the target map 4 ( x )  (6) is fully chaotic with Lyapounov 
number A, = 0.382 91, rounded to five digits. It has a single chaotic attractor with 
open interval (0, 1) as its basin of attraction. 

The dynamics generated by the sequence of maps qbm(x) is also very simple. For 
m = 1 the whole of the open interval ( 0 , l )  is attracted to the fixed point x = 4. So the 
attractor consists of a single fixed point. For m > 1 the dynamics is chaotic with 
Lyapounov numbers A, all exceeding zero. 

Figure 4 displays the dependence of A, on the parameter m. One can see that, as 
m increases from two onwards, A m  oscillates around some mean value. Initially the 
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Figure 4. Plot of Lyapounov numbers A,,, corresponding to the sequence {+,,,} (5). The 
confinement of A,,, around an average value is obvious. Note the initial oscillations in A,. 
The lines joining the successive points serve as a visual aid. 

oscillations are large but quickly die out and the successive Lyapounov numbers cluster 
around A,. As the sequence 4, is scanned to approach the target map 4(x), after a 
finite m value ( m  > 1) the maps 4, and the target map 4(x)  share the property of 
generating chaotic dynamics. Again, after a finite value of m ( m  > 18) the chaotic 
character of the system dynamics is seen to be almost independent of m, apart from 
negligible fluctuations. 

We now compare the chaotic dynamics due to the supercritical Newton iteration 
and the tent map with that due to {&,(x)} of (5). As seen before, the supercritical 
Newton iteration can be replaced by the Bernoulli shift, whose Lyapounov number is 
a constant independent of any parameter. Thus a fully chaotic dynamics is generated 
and the ‘amount of chaos’ does not depend on any parameter. For the tent map, the 
Lyapounov number increases logarithmically with the parameter a, becomes positive 
for a > $ and tends to the value for the Bernoulli shift as a + 1. We can now see that 
the parameter dependence obtained for the maps {qb,(x)}, as given in the above 
paragraph and figure 4, is essentially different from that obtained for the above two 
maps. Thus it does not seem possible to reduce the dynamics due to {4,(x)} to that 
due to any one of the above maps using a transformation. 

In order to check on the possible dependence of the Lyapounov number on the 
initial conditions, we computed 100 Lyapounov numbers for the target map 4(x) (6) 
using 100 different values for x,, in (2), generated by a uniform random number 
generator over the open interval (0 , l ) .  These turn out to be constant with average 
value A, = 0.382 91 and standard deviation 0.858 26 x both rounded to five digits. 

The most important finding of these computer experiments is the observed depen- 
dence of Lyapounov numbers on the parameter m labelling the maps { f m ( x ) }  and 
{&(x)} in (3) and (5). This dependence can be summarised as follows. 

( a )  For m exceeding a finite value, A,,, > 0. 
( b )  For m exceeding a finite value, A, becomes almost independent of m and 

clusters in a small neighbourhood around A, which is the Lyapounov number for the 
target map. 
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These observations indicate that the sensitive dependence on initial conditions is 
a dynamical invariant for { f m ( x ) }  and {4m(x)} as the corresponding target map is 
approached through these maps. However, since our computer experiments do not 
explicitly use any norm under which { f , (x )}  or { &(x)} converge, the experiments 
are not indicative of the exact role played by the type of convergence in generating 
the observed dynamics with the above properties. Thus an immediate problem is to 
relate the characteristics of maps and the types of convergence to the observed dynamics. 
This is analogous to the problem of obtaining general features of corresponding 
dynamics from the characteristics of the unimodal maps [5 ,6] .  In this context we wish 
to point to the fact that the maps { fm(x ) }  are bimodal while the maps {&(x)} are not 
even unimodal, although both share the qualitative features regarding the dependence 
of Lyapounov number on their respective parameters. We feel that the maps considered 
here point to a new scenario for chaos. At any rate, we think that the work presented 
in this paper enables one to meaningfully ask the following question. Does there exist 
a class of maps for which the sensitive dependence on initial conditions is a dynamical 
invariant in the above sense? And if it does exist, what are its essential characteristics? 
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